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We summarize techniques for optimal geometric estimation from noisy observations for computer
vision applications. We first discuss the interpretation of optimality and point out that geomet-
ric estimation is different from the standard statistical estimation. We also describe our noise
modeling and a theoretical accuracy limit called the KCR lower bound. Then, we formulate esti-
mation techniques based on minimization of a given cost function: least squares (LS), maximum
likelihood (ML), which includes reprojection error minimization as a special case, and Sampson
error minimization. We describe bundle adjustment and the FNS scheme for numerically solving
them and the hyperaccurate correction that improves the accuracy of ML. Next, we formulate
estimation techniques not based on minimization of any cost function: iterative reweight, renor-
malization, and hyper-renormalization. Finally, we show numerical examples to demonstrate that
hyper-renormalization has higher accuracy than ML, which has widely been regarded as the most
accurate method of all. We conclude that hyper-renormalization is robust to noise and currently is
the best method.
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2. Preliminaries

2.1 Optimization of geometric estimation

“Optimization” of geometric estimation has a
slightly different meaning from the conventional op-
timization, which means computing a solution that
maximizes or minimizes a given cost function. Find-
ing a solution that maximizes the profit, the gain,
or the efficiency or minimizes the loss, the error, or
the delay is the most fundamental problem in all do-
mains of engineering. The aim of geometric estima-
tion in computer vision, on the other hand, is simply
to obtain a solution to a given equation. However,
the difficulty lies in the fact that the equation has
no solution if it is defined using noisy observations.
Hence, the task is: assuming that the equation has a
unique solution in the absence of noise, we estimate
it. We call the solution that would be obtained in the
absence of noise the true value. In this sense, estima-
tion of the true value critically relies on the properties
of the noise. Thus, the task of geometric estimation
that we consider in this paper is:

Appropriately assuming the statistical prop-
erties of the noise, we infer the solution of
equations defined in terms of noisy observa-
tions.

We could solve this problem by reducing it to the con-
ventional optimization of minimizing a cost function,
but we need not necessarily do so. This is the main
message of this paper.

2.2 Definition of geometric estimation

The geometric estimation problem we consider
here is defined as follows. We observe some quan-
tity @ (a vector), which is assumed to satisfy in the
absence of noise an equation

F(x;0) =0, (1)

parameterized by unknown vector 6. This equation
is called the geometric constraint. Our task is to es-
timate the parameter @ from noisy instances ., o =
1, ..., N, of . Many computer vision problems are
formulated in this way, and we can compute from the
estimated @ the positions, the shapes, and the mo-
tions of the objects we are viewing. In many prob-
lems, we can reparameterize the problem so that the
constraint is liner in the parameter 8 (but generally
nonlinear in the data x), and Eq. (1) has the form

(£(z),0) =0, (2)

where &(x) is a vector-valued nonlinear mapping of x.
In this paper, we denote the inner product of vectors
a and b by (a,b). Equation (2) implies that the scale
of @ is indeterminate, so we hereafter normalize 0 to
unit norm: @] = 1.
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Example 1 (line fitting). To a given point se-
quence (Zq,Yq), @ = 1, ..., N, we fit a line

Az +By+C =0. (3)
(Fig. 1(a)). If we define
&(z,y) = (2,9, 1),

Eq. (3) is written as

0=(A, B, C)", (4

(&(z,9),6) = 0. (5)
Example 2 (ellipse fitting) To a given point se-
quence (Tq,Ya), @ = 1, ..., N, we fit an ellipse

Az® +2Bay + Cy? +2(Dx + Ey) + F=0.  (6)

(Fig. 1(b)). If we define

(22, 22y, v°, 22, 2y, 1),

&(z,y)
0=(A B C, D, E,F)T, (7)

Eq. (6) is written as

Example 3 (fundamental matrix computation)
Corresponding points (x,y) and (2, y’) in two images
of the same 3-D scene taken from different positions
satisfy the epipolar equation (Fig. 1(c))

X X
(ly ). F|y ]| =0, 9)
1 1

where F' is called the fundamental matriz, from which
we can compute the camera positions and the 3-D
structure of the scene [12]. If we define

E(z,y. 2 y) = (w2, oy, w oy’ gy y 2y D)7,
0 = (Fi1, Fio, Fi3, Fo1, Faz, Fas, F31, F3o, Fs3) ",
(10)

Eq. (9) is written as

(£(x,y,a?’,y’),0) =0. (11)

In these examples, the constraint is a single equa-
tion (a scalar equation), but the following arguments
can be straightforwardly extended to multiple equa-
tions (a vector equation). However, we would need
a lot of indices, which makes the description rather
complicated. For simplicity, we focus only on the sin-
gle constraint case in this paper.

Note that the vectors in Egs. (4), (7), and (10) con-
tain the constant 1 in their components. If the input
values (z,y) and (2',y’) are very large, the constant
1 may be ignored in the course of finite length numer-
ical computation, resulting in considerable accuracy
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Figure 1: (a) Line fitting. (b) Ellipse fitting. (¢) Fundamental matrix computation.

loss. To prevent this, we need to divide the input val-
ues by an appropriate reference length so that z, y,
a’, and gy are all O(1) [10]. To concentrate on theo-
ries, however, we do not consider for the moment such
techniques for finite length numerical computation.

We have so far assumed that the true values &, of
the observations x,, exactly satisfy Eq. (2). In reality,
however, different types of values that do not satisfy
Eq. (2) even in the absence noise often mix in the data
due to imperfection of image processing operations.
Such values are called outliers, while the values that
should satisfy the constraint in the absence of noise
are called inliers. Because we cannot assume any
properties about outliers except that they do not sat-
isfy the constraint, theoretical analysis of outliers is
very difficult. One of the basic treatments for detect-
ing outliers is voting: we compute the parameter 8 by
assuming that the data are inliers and iteratively test
if the result agrees with all the data or a part of the
data. Popular voting techniques include RANSAC
(Random Sampling Consensus) [8] and LMedS (Least
Median of Squares) [40]. Estimation that is not very
much affected by outliers is called robust estimation,
to which various M-estimators [13], which alleviate
the influence of those data largely deviated from the
constraint, are introduced. Since any outlier detec-
tion technique must be coupled with estimation for
inliers, we consider in this paper only inlier data.

2.3 Modeling of noise

In the context of image analysis, “noise” means un-
certainty of image processing operations, rather than
random fluctuations over time or space as commonly
understood in physics and communications. This re-
flects the fact that standard image processing oper-
ations such as feature extraction and edge detection
are not perfect and do not necessarily output exactly
what we are looking for. We model this data un-
certainty in statistical terms: the observed value x,
is regarded as a perturbation from its true value &,
by an independent random Gaussian variable Ax,, of
mean 0 and covariance matrix V[z,]. Furthermore,
the covariance matrix V[xz,] is assumed to be known
up to scale. Namely, we express it in the form

Vizs] = 0*Vo[z,] (12)

for some unknown constant o, which we call the noise
level. The matrix Vp[x,], which we call the normal-
ized covariance matriz, describes the orientation de-
pendence of the uncertainty in relative terms and is
assumed to be known. The separation of V[x,] into
o2 and Vj[z,] is merely a matter of convenience; there
is no fixed rule. This convention is motivated by the
fact that estimation of the absolute magnitude of data
uncertainty is very difficult in practice, while optimal
estimation can be done, as shown shortly, only from
the knowledge of Vp[x,].

If the observation x,, is regarded as a random vari-
able in this way, its nonlinear mapping &(x,,), which
we write &, for short, is also a random variable. Its
covariance matrix V[€,] = 02V;[€,] is evaluated to
a first approximation in terms of the Jacobi matrix
0&/0x of the mapping &(x) as follows:

) T
Voleal g

=T

_ %

VO[SO(] O

)

=T

This expression contains the true value ®,, which
in actual computation is replaced by the observation
. It has been confirmed by experiments that this
replacement does not practically affect the final re-
sult. It has also been confirmed that upgrading the
first approximation to higher orders does not have
any practical effect.

Strictly speaking, if the noise in x, is Gaussian,
the noise in its nonlinear mapping &, is no longer
Gaussian, although it is expected to be Gaussian-like
when the noise is small. The effect of approximating
this Gaussian-like distribution by a Gaussian distri-
bution is discussed later.

2.4 Statistical models

What we call “geometric estimation” has much
in common with the standard estimation problems
treated in most textbooks of statistics, which we sim-
ply call “statistical estimation”, but many different
features exist. The standard statistical estimation is
formulated as follows. Given observations x1, ..., €y,
we regard them as independent samples from a prob-
ability density p(x|@) parameterized by an unknown
0, and we estimate @ from xy, ..., xxy. The prob-
ability density p(x|0) is called the statistical model,
which explains the underlying mechanism of the phe-
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nomenon we are observing. In other words, the pur-
pose of statistical estimation is to understand the hid-
den source of our observations. Naturally, we un-
derstand it better as the number of observations in-
creases. In this sense, accuracy vs. the number N
of observations in the asymptotic limit N — oo is a
major concern of statistics. Basically, there exist two
approaches for statistical estimation:

Minimization principle

We seek the value 0 that minimizes a specified cost
function J(x1,...,xn;0). The most widely used ap-
proach is mazimum likelihood (ML), which minimizes

N
J == logp(zal6). (14)

The motivation is to maximize the I[likelihood
ngl p(4|0), but for the convenience of computa-
tion, its negative logarithm is minimized. We can
further introduce the a priori probability p(@) of the
parameter 8 and minimize

N
J == logp(xalf) —logp(6).  (15)
a=1

This is equivalent to maximizing the a posteriori prob-
ability obtained by the Bayes theorem and called the
mazimum a posteriori probability (MAP). This is a
special case of Bayesian estimation, which minimizes
the Bayes risk defined in terms of the estimated a
posteriori probability density function.

Method of estimating functions

We compute the value 8 that satisfies a set of equa-
tions in the form

g($17~-~7$N§0) :07 (16)

which is called the estimating equation [9]. The func-
tion g is called the estimating function. If we choose
g to be

N
g = _ZVGIng(wa‘B)a (17)
a=1
the problem reduces to ML, where Vg denotes the
(vector-valued) derivative with respect to 6. Thus,
the estimating equations can be regarded as general-
ization of the minimization principle. However, the
estimating function g need not be derivatives of any
cost function; we can define or modify g in such a way
that the solution @ has desirable properties. The de-
sirable properties include unbiasedness, consistency,
and efficiency. In this sense, the method of estimat-
ing functions is more general and more flexible with a
possibility of yielding better solutions than the mini-
mization principle.
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2.5 Geometric models

One of the most prominent distinctions of the ge-
ometric estimation problems we are considering from
the standard statistical estimation problems is that
the starting point is Eq. (1), which merely states that
the true values should satisfy this implicit equation.
We call Eq. (1) (or Eq. (2)) the geometric model,
which only specifies the necessary constraint and does
not explain the mechanism as to how the data x, are
generated. Hence, we cannot express x, in terms of
the parameter 8 as an explicit function.

Another big difference is that while statistical es-
timation is based on repeated observations regarded
as samples from the statistical model (= probability
density), geometric estimation is done from one set
of data {x1, ..., &y} for that problem. Naturally,
the estimation accuracy increases with less noise (=
less observation uncertainty). In this sense, accuracy
vs. the noise level ¢ in the limit ¢ — 0 is a major
concern [19].

In computer vision applications, the asymptotic
analysis for N — oo does not have much sense, be-
cause the number of data obtained by image process-
ing operations is limited in number. Usually, the out-
put of an image processing operation is accompanied
by its reliability index, and we select only those data
that have high reliability indices. If we want to in-
crease the number of data, we necessarily need to
include those with low reliability, but they are often
misdetections. Nevertheless, two approaches can be
introduced as in the case of statistical estimation:

Minimization approach

We choose the value @ that minimizes a specified cost
function. This is regarded as the standard for com-
puter vision applications.

Non-minimization approach

We compute the value 6 by solving a set of equa-
tions, which need not be defined by derivatives of
some function. Hence, the solution does not neces-
sarily minimize any cost function. As in the case of
statistical estimation, this approach is more general
and more flexible with a possibility of yielding better
solutions than the minimization approach. However,
this viewpoint is not well recognized in computer vi-
sion research.

2.6 KCR lower bound

For the minimization or the non-minimization ap-
proach, there exists a theoretical accuracy limit. This
is formulated as follows. We assume that the true
values £, of the (transformed) observations £, sat-
isfy the constraint (£,,0) = 0 for some 6. If we
estimate it from the observations {€,})_; by some
means, the estimated value 0 can be regarded as a
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function O({&,}Y_,) of {€,}N_,. This function is
called an estimator of 8. Let A@ be its error, i.e.,
write 6 = 6 + A0, and define the covariance matrix
of 8 by

V0] = E[AGAGT], (18)

where E[-] denotes expectation over data uncer-
tainty. If we can assume that

e cach &, is perturbed from its true value &, by
independent Gaussian noise of mean 0 and co-
variance matrix V[¢£,] = o2V;[€,], and

e the function O({&,}N_,) is an unbiased estima-
tor, i.e., E[0] = 6 identically holds for whatever

0,
then the following inequality holds [5, 16, 17, 19].

o 0P L n &b \T

viel- 5 (5 az::l ®, vo[ga]o)) - (19

Here, A > B means that A — B is a positive semidef-
inite symmetric matrix, and (-)~ denotes the pseudo
inverse. Chernov and Lesort [5] called the right
side Eq. (19) the Kanatani-Cramer-Rao (KCR) lower
bound. Equation (19) is for a single constraint in the
form of Eq. (2) but can be extended to multiple con-

straints [24, 21] and to general nonlinear constraints
[16].

3. Minimization Approach

First, we overview popular geometric estimation
techniques for computer vision that are based on the
minimization approach.

3.1 Least squares (LS)

Since the true values €, of the observations &, sat-
isty (€,,,60) = 0, we choose the value 8 that minimizes

N
Z (€.,0) (20)

for noisy observations &, subject to the constraint
|[6]] = 1. This can also be viewed as minimizing
SN (€.,0)2/]10]2. Equation (20) can be rewritten
in the form

N N
Z (£,.0)° ZeTsazl 6
a=1 a:l
= (6. Seel0)- (0.M0), ()
a=1

=M

which is a quadratic form of M. As is well known,
the unit vector 8 that minimizes this quadratic form
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is given by the unit eigenvector of M for the smallest
eigenvalue. Since the sum of squares is minimized,
this method is is called least squares (LS). Equa-
tion (20) is often called the algebraic distance, so this
method is also called algebraic distance minimization.
Because the solution is directly obtained without any
search, this method is widely used in many applica-
tions. However, it has been observed that the solu-
tion has large statistical bias. For ellipse fitting in
Ezample 2 (Sec. 2.2), for instance, the fitted ellipse is
almost always smaller than the true shape. For this
reason, this method is not suited for accurate esti-
mation. However, this method is very convenient for
rough estimation for guiding image processing, for the
outlier-detection voting described in Sec. 2.2, and for
initializing iterative optimization schemes.

3.2 Maximum likelihood (ML)

If the noise in each x,, is an independent Gaussian
variable of mean 0 and covariance matrix Viz,] =
o02Vo[z,.], the Mahalanobis distance of the observa-
tions {x,} from their true values {Z,} is

Lo — i(xa ‘/O[wa]_l(woz - ja))a (22)

2| =
1=

and the likelihood of {x} is written as Ce=N7/20%
where C' is a normalization constant that does not
depend on Z,, or 8. Thus, mazimum likelihood (ML)
that maximizes the likelihood is equivalent to mini-
mizing Eq. (22) subject to the constraint

(£(za),0) = 0. (23)

As a special case, if the noise is homogeneous, i.e., in-
dependent of «, and isotropic, i.e., independent of the
orientation, we can write Vp[x,] = I (the identity),
which reduces Eq. (22) to the geometric distance

1 N
- Nz [|To — Zq|% (24)
a=1

Minimizing this subject to Eq. (23) is called geometric
distance minimization by computer vision researchers
and total least squares (TLS) by numerical analysis
researchers!. If Z, represents the projection of the
assumed 3-D structure onto the image plane and x,,
is its actually observed position, Eq. (24) is called the
reprojection error. Minimizing it subject to Eq. (23)
is often called reprojection error minimization.
Geometrically, ML can be interpreted to be fitting
to N points x, in the data space the parameterized

LIf the data o are 2-D positions o = (Ta, Ya), and if the
y-coordinate alone undergoes noise, we only need to minimize
(1/N) Za 1(Ya — Fa)?. In general, if only some components
of the data @, contain noise, the problem is called partial least
squares (PLS).
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(Xq - %, Vi Xa] W(Xq- Xq)) = constant

S (E(x).9)=0

Figure 2: Fitting a hypersurface (£(z),0) = 0 to points
x, in the data space.

hypersurface (&(x),0) = 0 by adjusting 0 (Fig. 2),
where the discrepancy of the points from the sur-
face is measured not by the Euclid distance but by
the Mahalanobis distance of Eq. (22), which inversely
weights the data by the covariances, thereby imposing
heavier penalties on the points with higher certainty.
In the field of computer vision, this approach is widely
regarded as the ultimate method and often called the
Gold Standard [12]. However, this is a highly non-
linear optimization problem and difficult to solve by
a direct means. The difficulty stems from the fact
that Eq. (23) is an implicit function of &,. If we
could solve Eq. (23) for &, to express it as an explicit
function of @, we could substitute it into Eq. (22) to
obtain an unconstrained optimization problem for
alone, but this is generally not possible. In Ezamples
1 (line fitting), 2 (ellipse fitting), and & (fundamen-
tal matrix computation) in Sec. 2.2, for instance, we
cannot express (z,y) or (x,y,z’,y’) in terms of 6.

3.3 Bundle adjustment

A standard technique for minimizing Eq. (22) sub-
ject to Eq. (23) is to introduce a problem-dependent
auxiliary variable to each X, and express &, in terms
of X, and 0 in the form

To = Za(Xq,0). (25)
Then, we substitute this into Eq. (22) and minimize

J({Xa}g:b 9)
N
= %Z(wa—ia(X a:0) Vo @a] (Ta—Za(Xa.0))

(26)

over the joint parameter space of {X,})_; and 6.
A typical example of this approach is 3-D recon-
struction from multiple images (Fig. 3), for which
., has the form of o = (Ta, Yo, Thy Yhy s Ths Yo ),
concatenating the projections (Za,¥Ya), (L, 4L), -
(a2, y') of the ath point in the scene onto the images.
The unknown parameter 0 specifies the state of all the
cameras, consisting of the extrinsic parameters (the
positions and orientations) and the intrinsic param-
eters (the focal lengths, the principal points, the as-
pect ratios, and the skew angles). If we introduce the
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x) (x,y) X7y

@ @ ......

Figure 3: 3-D reconstruction by bundle adjustment

3-D position X, = (X4, Ya, Za) of each point in the
scene as the auxiliary variable, the true value &, of
x,, can be explicitly expressed in the form &, (X, 0),
which describes the image positions of the 3-D point
X, that should be observed if the cameras have the
parameter @. Then, we minimize the reprojection er-
ror, i.e., the discrepancy of the observed projections
2, from the predicted projections Z,(X,0). The
minimum is searched over the entire parameter space
of {X,}Y_, and 8. This process is called bundle ad-
Justment [30, 32, 44], a term originated from pho-
togrammetry, meaning we “adjust” the “bundle” of
lines of sight so that they pass through the observed
points in images. The package program is available
on the Web [32]. The dimension of the parameter
space is 3N + “the dimension of 8”, which becomes
very large when many points are observed.

This bundle adjustment approach is not limited to
3-D reconstruction from multiple images. In Fzam-
ples 1 (line fitting) and 2 (ellipse fitting) in Sec. 2.2,
for example, if we introduce the arc length s, of the
true position (Z, ¥, ) along the line or the ellipse from
a fixed reference point as the auxiliary variable, we
can express (Zq,Yq) in terms of s, and 6. Then, we
minimize the resulting Mahalanobis distance J over
the entire parameter space of s1, ..., sy and 8. In-
stead of the arc length s,, we can alternatively use
the argument ¢, measured from the z-axis [42]. A
similar approach can be done for fundamental matrix
computation [4].

The standard numerical technique for the search
of the parameter space is the Levenberg-Marquardt
(LM) method [38], which is a hybrid of the Gauss-
Newton iterations and the gradient descent. However,
depending on the initial value of the iterations, the
search may fall into a local minimum. Various global
optimization techniques have also been studied [11].
A typical method is branch and bound, which intro-
duces a function that gives a lower bound of J over
a given region and divides the parameter space into
small cells; those cells which have lower bounds that
are above the tested values are removed, and other
cells are recursively subdivided [11, 14]. However, the
evaluation of the lower bound involves a complicated
technique, and searching the entire space requires a
significant amount of computational time.
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3.4 Nuisance parameters

As we can see from Eq. (26), the number of un-
knowns increases as we observe more data x; there
exist as many auxiliary variables as the number of
data. As pointed out in Sec. 2.4, the asymptotic anal-
ysis of N — oo for the number N of observations is
a major concern in the domain of standard statisti-
cal estimation, but the analysis becomes anomalous
if the number of unknowns also increases as N — oo.
For this reason, the auxiliary variables X, are called
nuisance parameters, while 0 is called the structural
parameter or the parameter of interest. The fact that
the standard asymptotic properties of ML for N —
oo do not hold in the presence of nuisance parameters
was pointed out by Neyman and Scott [34] in 1940s,
and this anomaly is known as the Neyman-Scott prob-
lem. Although the asymptotic analysis of N — oo
does not make much sense for computer vision appli-
cations as pointed out in Sec. 2.5, this is a serious
problem for standard statistical estimation based on
repeated sampling. One mathematical technique for
avoiding this anomaly is to regard the auxiliary vari-
ables X, not as unknowns but as “samples” from
an unknown probability density g(X) that does not
depend on N; we estimate the function g(X) and
the parameter 6 simultaneously. This approach is
called the semiparametric model. [2, 3]. Okatani and
Deguchi [35] applied this approach to 3-D reconstruc-
tion from multiple images.

3.5 Gaussian approximation in the &-space

The search in a high-dimensional parameter space
of the bundle adjustment approach can be avoided
if we introduce Gaussian approximation to the noise
distribution in the &-space. As pointed out in Sec. 2.3,
if the noise in the observation x. is Gaussian, the
noise in its nonlinear mapping &, = &(x,) is not
strictly Gaussian, although it is expected to have a
Gaussian-like distribution if the noise is small. If
it is approximated to be Gaussian, the optimization
computation becomes much simpler. Suppose &, has
noise of mean 0 with the covariance matrix V[€_]
= 02Vpl¢,] evaluated by Eq. (13). Then, the ML
computation reduces to minimizing the Mahalanobis
distance

éa]_l(ga - éoz)) (27)

1 X
=y 2
in the &-space subject to the linear constraint

(€.,0) = 0. (28)

Geometrically, this is interpreted to be fitting to N
points &, in the &-space the parameterized “hyper-
plane” (&,0) = 0 by adjusting 8, where the discrep-
ancy of the points from the plane is measured by the
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(8a - &a, VdEa] (Eq- &q)) = constant

(€,6)=0

Figure 4: Fitting a hyperplane (&€,0) = 0 to points £, in
the &-space.

Mahalanobis distance of Eq. (27) inversely weighted
by the covariances of the data in the &-space (Fig. 4).
Since Eq. (28) is now “linear” in €, this constraint
can be eliminated using Lagrange multipliers, reduc-
ing the problem to unconstrained minimization of

(29)

This means, in the statistical terms of Sec. 3.4, we
have effectively eliminated the nuisance parameters
€.,. Today, Eq. (29) is called the Sampson error [12]
after the ellipse fitting scheme introduced by P. D.
Sampson [41].

3.6 Sampson error minimization

Various numerical techniques have been proposed
for minimizing the Sampson error in Eq. (29). The
best known is the FNS (Fundamental Numerical
Scheme) of Chojnacki et al. [7], which goes as fol-
lows:

1.Let Wy =1, =1, ...,

2. Comput the matrices

N, and 8y = 0.

1 & -
Mzﬁzwas 3

a=1

L = 007 %[Sa] (30)

an

3. Solve the eigenvalue problem
(M —L)6 =)0, (31)
and compute the unit eigenvector @ for the small-
est? eigenvalue \.
4. If @ =~ 6y up to sign, return @ and stop. Else, let
-
(0,V0[€,10)
and go back to Step 2.

Wea — 6y — 0, (32)

2We can alternatively compute the unit eigenvector 6 for
the smallest eigenvalue A\ in absolute value, but it has been
experimentally confirmed that convergence is faster for com-
puting the smallest eigenvalue [26].
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The background of this method is as follows. At the
time of convergence, the matrices M and L have the
form

N
M=% zz:evoﬁae)’
N
_ (0,8,)"Vol€a]
L=—_ ; ovos ) (33)

It is easily seen that the derivative of the Sampson er-
ror J in Eq. (29) is written in terms of these matrices
in the form

VeJ =2(M — L)6. (34)

We can prove that the FNS iterations has a unique
fixed point. To be specific, when the iterations have
converged, the eigenvalue A in Eq. (31) is shown to
be 0. Hence, the value 8 returned by the above pro-
cedure is the solution of VgJ = 0.

Other methods exist for minimizing Eq. (29)
including the HEIV (Heteroscedastic Errors-in-
Variables) of Leedan and Meer [31] and Matei and
Meer [33], and the projective Gauss-Newton iterations
of Kanatani and Sugaya [26], all computing the same
solution. Note that the “initial solution” obtained in
the beginning by letting W, = 1 coincides with the
LS solution described in Sec. 3.1. The above proce-
dure is for the case of a single constraint in the form
of Eq. (2) but can be straightforwardly extended to
the case of multiple constraints [21].

3.7 Minimization with internal constraints

In some applications, the parameter 8 may have
internal constraints in the form of ¢1(0) = 0, ...,
¢-(0) = 0, where ¢1(0), ..., $.(8) are homogeneous
polynomials.

67 Og B9
is constrained to have determinant 0. The internal
constraint det F' = 0 is written as ¢(F') = 0, where

01 02 03
Example 4 Suppose the matrix F' = | 04 05 06

&(0)=010505+0205074030504—030507—020,09—0105065.

(35)

01 62 O3
Example 5 Suppose the matrix R = [ 04 05 65 | is

07 0s B9
constrained to be a rotation. The internal constraint

R"R = I is written as ¢, (R) = 0, ..., ¢s(R) = 0,
where

$1(0) = 0104 + 0205 + 0306,

$2(0) = 0407 + 0505 + 0500,

#3(0) = 0761 + 0302 + 0903,

$4(0) = 07 + 05 + 63 — 01 — 05 — 63,

¢5(8) = 0% + 03 + 05 — 07 — 03 — 63,

$6(0) = 07 + 63 + 65 — 6. (36)
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Here, 0y is a dummy parameter. In the end, we 6 is
re-scaled so that 6y = 1 in the end.

The EFNS (Eztended FNS) of Kanatani and Sug-
aya [25, 28] for minimizing the Sampson error in the
presence of internal constraints go as follows:

1. Provide an initial guess 6.

2. Compute the matrices

1

N Z Wagag;ra
a=1

N
L= & w2006Vl (37
a=1

M:

3. Compute Vgo1(0), ..., Vod,.(0). Let {vy, ..., v,.}
be the orthonormal system obtained from them
by Schmidt orthogonalization, and compute the
projection matrix

Py=I-> v (38)
k=1

4. Let vy, ..., v, be the unit eigenvectors of

X =Py(M —L)P (39)
for the smallest r + 1 eigenvalues.

5. Project the current value @ onto the linear space
spanned by {0y, ...,0,.}:

6=> (0,0,)0,. (40)

6. Compute .

0 ZN[PMB], (41)
where N|-] denotes normalization to unit norm
(Na] = a/|lal).

7. If 8 =~ 6 up to sign, return 6 and stop. Else, let

1
(6,V0[£,10)°
and go back to Step 2.

As in the case of FNS, the fixed point of the EFNS
iterations is proved to be unique [25, 28]. Hence,
when the iterations have converged, the returned
value necessarily satisfies ¢1(0) = 0, ..., ¢-(0) = 0
and stationalizes J.

The EFNS of Kanatani and Sugaya [25, 28] was de-
vised to compute the fundamental matrix F', which
is constrained to have rank 2, for 3-D reconstruction
from two views. The procedure is straightforwardly
extended to multiple constraints as in the case of
FNS. In the past, minimization in the presence of
internal constraints has been done in many different
ways. They are roughly classified into three cate-
gories:
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Figure 5: (a) A posteriori correction. (b) Internal access. (c¢) External access.

A posteriori correction: Minimize J without con-
sidering the internal constraints and modify the
solution u so that they are satisifed (Fig. 5(a)).

Internal access: Parameterize € so that internal
constraints are identically satisfied and minimize
J in the resulting (“internal”) parameter space
(Fig. 5(b)).

External access: Do iterations in the uncon-
strained (“external”) parameter space in such a
way that the solution automatically satisfies the
internal constraints at the time of convergence

(Fig. 5(c)).

EFNS is an external access approach.
3.8 Computation of the exact ML solution

Since the Sampson error of Eq. (29) is obtained
by approximating the non-Gaussian noise distribu-
tion in the &-space by a Gaussian distribution, the
solution does not necessarily coincide with the ML
solution that minimizes the Mahalanobis distance in
Eq. (22). However, once we have obtained the so-
lution @ that minimizes Eq. (29), we can iteratively
modify Eq. (29) by using that € so that Eq. (29) co-
incides with Eq. (22) in the end. This means that we
obtain the exact ML solution. The procedure goes as
follows [29]:

1. Let J§ = oo (a sufficiently large number), &, =
Ty, and &, =0, =1, ..., N.
2. Evajuate the normalized covariance matrices

Vo[€,] by replacing x,, by &, in their definition.

3. Compute the following &
¥ = — a- 43
fi=but oo @ (13)

T=x,
4. Compute the value 8 that minimizes the modified
Sampson error
N

* l (5270)2
TNl evie M

5. Update x, and &, as follows:

o (€,0Volza] €|
(0, Vol2,0) O,y
Ty — Ty — T (45)

6. Evaluate J* by

N
T = z@;(@a,%[ma]@). (46)
If J* = Jy, return 0 and stop. Else, let Jy «— J*
and go back to Step 2.

Since the modified Sampson error in Eq. (44) has the
same form as the Sampson error in Eq. (29), we can
minimize it by FNS (or HEIV or projective Gauss-
Newton iterations). According to numerical experi-
ments, this iterative modification converges after four
or five rounds, yet in many practical problems the
first four or five effective figures remain unchanged
[21, 27, 28]. In this sense, we can practically identify
the Sampson error minimization with the ML com-
putation.

3.9 Hyperaccurate correction

It has been widely recognized that the Sampson
error minimization solution, which can be practically
identified with the ML solution, has very high ac-
curacy. However, it can be shown by detailed error
analysis that the solution has statistical bias of O(c?)
and that the magnitude of the bias can be theoreti-
cally evaluated [19]. This implies that the accuracy
can be further improved by subtracting the theoreti-
cally expected bias. This process is called hyperaccu-
rate correction and goes as follows [18, 19]:

1. Estimate the square noise level o2 from the com-
puted solution 6 and the corresponding matrix
M in Eq. (33) by

2 (8,M0)

ooy W

where n is the dimension of the vector 6.

2. Compute the correction term3

2 N
o _
Aco = _NMnfl E Wa(eaa9>£a
a=1

2

. N
+% M, Y W2(E,, M, \Vol€,10)E.,,

a=1

(48)

3The first term of Eq. (48) is omitted in [18, 19].
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where e, is a vector that depends on individual
problems, and M, _, is the pseudoinverse of M
with truncated rank n — 1 computed after the
smallest eigenvalue is replaced by 0 in its spectral
decomposition.

3. Correct the solution € in the form

0 — N0 — A0, (49)

where N[-] denotes the normalization operator
into unit norm (NM{a] = a/|al)).

The vector e, is 0 for many problems including line
fitting (Example 1 in Sec. 2.2) and fundamental ma-
trix computation (Fzample 3 in Sec. 2.2). It is gen-
erally O if multiple images are involved. A typical
problem of nonzero e, is ellipse fitting (Example 2
in Sec. 2.2), for which e, = (1,0,1,0,0,0)". How-
ever, the effect is negligibly small, and the solution is
practically the same if e, is replaced by 0

The above bias correction concerns geometric es-
timation based on the geometric model of Eq. (2).
In statistics, on the other hand, it is known that
ML entails statistical bias in the presence of nuisance
parameters, and various studies exist for analyzing
and removing bias in the ML solution. Okatani and
Deguchi [36, 37] applied them to vision problems by
introducing auxiliary variables in the form of Eq. (25).
They analyzed the relationship between the bias and
the hypersurface defined by the constraint [36] and
introduced the method of projected scores [37].

Since ML, of which reprojection error minimiza-
tion is a special case, has been commonly regarded as
the ultimate method (Gold Standard [12]) for com-
puter vision, the fact that the accuracy of the ML
solution can be further improved by the above hy-
peraccurate correction is surprising to many vision
researchers. For hyperaccurate correction, however,
one first needs to obtain the ML solution by an it-
erative method such as FNS and also estimate the
noise level o. Then, a question arises. Is it not pos-
sible to directly compute the corrected solution from
the beginning, say, by modifying the FNS iterations?
We now show that this is possible if we adopt the
non-minimization approach of geometric estimation.

4. Non-minimization Approach

4.1 Iterative reweight

The oldest method that is not based on minimiza-
tion is the following iterative reweight:

1. Let Wo =1, a=1, ..., N, and 8y = 0.
2. Comput the following matrix M:

N
_ T
M = N agzl Wak.Eq -

10

MEM.FAC.ENG.OKA.UNI. Vol. 47

3. Solve the eigenvalue problem

M6 = )0, (51)

and compute the unit eigenvector 8 for the small-
est eigenvalue .

4. If @ ~ @y up to sign, return @ and stop. Else, let

1
(6,V5[£4)0)"

and go back to Step 2.

W, — 0o — 0, (52)

The motivation of this method is the weighted least
squares that minimizes

1 N
NZ 50470

_ (6. L T ) —
= (0, N;Wasasa 0) =

Zweng 0

(0,M6).  (53)

=M

This is minimized by the unit eigenvector 8 of the ma-
trix M for the smallest eigenvalue. As is well known
in statistics, the optimal choice of the weight W, is
the inverse of the variance of that term. Since (£, 0)
= 0, we have (£,,0) = (A€,,0)+---, and hence the
leading term of the variance is

E[(AE,,0)%] = E[6" A&, AL, 6]
= (0. B[AE,AE,10) = 0%(0.V0[€,]0).  (54)
Hence, we should choose
1
Ve = o vile o) 9)

but 6 is unknown. So, we do iterations, determining
the weight W, from the value of @ in the preceding
step. The “initial solution” computed with W, =1
coincides with the LS solution, minimizing Eq. (20)
in Sec. 3.1.

If Eq. (55) is substituted, Eq. (53) coincides with
the Sampson error in Eq. (29). With the iterative
update in Eq. (52), it appears that Eq. (29) is mini-
mized. However, we are computing at each step the
value of 8 that minimizes the numerator part for the
fixed value of the denominator terms determined in
the preceding step. Hence, at the time of the conver-
gence, the resulting solution @ is such that

N /

(£.,60)° <1 (£.,0)
z::evo Ng .o

for any @’, but this does not mean

N N /

1 (£a70 £a70 )
il 7. 57
N 2 @I E) S E 7o) 0
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The fact that iterative reweight does not minimize a
particular cost function has not been well recognized
by vision researchers.

The perturbation analysis in [19] shows that the
covariance matrix V[0] of the resulting solution 6
agrees with the KCR lower bound (Sec. 2.6) up to
O(o*). Hence, it is practically impossible to reduce
the variance any further. However, it has been widely
known that the iterative reweight solution has large
bias [16]. Thus, the following strategies were intro-
duced to improve iterative reweight:

e Remove the bias of the solution.

e Exactly minimize the Sampson error in Eq. (29).

The former is Kanatani’s renormalization [15, 16],
and the latter is the FNS of Chojnacki et al. [7] and
the HEIV of Leedan and Meer [31] and Matei and
Meer [33].

4.2 Renormalization

Kanatani’s renormalization [15, 16] goes as fol-
lows*:

1. Let W, =1, =1, ..., N, and 6y = 0.

2. Compute the following matrices M and IN:

N N
1 - 1
M= — N=— .
N 2 Wabats N 2 Walble]

(58)

3. Solve the generalized eigenvalue problem

M6 = NGO, (59)
and compute the unit eigenvector 6 for the small-
est eigenvalue \ in absolute value.

4. If 8 =~ O up to sign, return 6 and stop. Else, let

1

Ve = G0 10)

0o — 6, (60)

and go back to Step 2.

The motivation of renormalization is as follows. Let
M be the true value of the matrix M in Eq. (58).
Since (£,,0) = 0, we have M6 = 0. Hence, 0 is
the eigenvector of M for eigenvalue 0, but M is un-
known. So, we estimate it. Since E[A&,] = 0 to a

4This is slightly different from the description in [15], in
which the generalized eigenvalue problem is reduced to the
standard eigenvalue problem, but the resulting solution is the
same [16].
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first approximation, the expectation of M is

N
S W€+ AE)(E, + AE)T]

EM] = B[+ 1
1 X .
= M + N;WO,E[A&AQ]
=M + - i W Vol€,] = M +o*N. (61)
N

Thus, M = E[M] — 0?N ~ M — 2N, so instead
of M6 = 0 we solve (M — 0?>N)@ = 0, or M =
02N6O. Assuming that o2 is small, we regard it as
the smallest eigenvalue A in absolute value. As in
the case of iterative reweight, we iteratively update
the weight W, so that it approaches Eq. (55). The
above procedure is for the case of single constraint
in the form of Eq. (2) but can be straightforwardly
extended to the case of multiple constraints [16, 22].

Kanatani’s renormalization [15, 16] attracted much
attention because it exhibited higher accuracy than
any other then known methods. However, questions
were repeatedly raised as to what it minimizes, per-
haps out of the deep-rooted preconception that op-
timal estimation should minimize something. Cho-
jnacki et al. [6] argued that renormalization can be
“rationalized” if viewed as approximately minimiz-
ing the Sampson error. However, the renormalization
process is not minimizing any particular cost func-
tion.

Note that the initial solution with W, = 1 solves
(Zh21 €aga )0 = A(S00L, Vol€,] )8, which is noth-
ing but the method of Taubin [43], known to be very
accurate algebraic method without requiring itera-
tions. Thus, renormalization is an iterative improve-
ment of the Taubin solution. According to many ex-
periments, renormalization is shown to be more ac-
curate than the Taubin method with nearly compa-
rable accuracy with the FNS and the HEIV. The ac-
curacy of renormalization is analytically evaluated in
[19], showing that the covariance matrix V[0)] of the
solution @ agrees with the KCR lower bound up to
O(o?) just as iterative reweight, but the bias is much
smaller. That is the reason for the high accuracy of
renormalization. According to experiences, the esti-
mation error has roughly the following order:

LS > iterative reweight > Taubin > renormalization
> ML.

4.3 Analysis of covariance and bias

Since the covariance matrix V[0] of the renormal-
ization solution 6 agrees with the KCR lower bound
up to O(o?), the covariance of the solution cannot be
substantially improved any further. Very small it may
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Figure 6: The true value 6, the computed value 6, and
its orthogonal component A18 of 8.

be, however, the bias is not 0. Note that the renor-
malization procedure reduces to iterative reweight if
the matrix N in Eq. (59) is replaced by the iden-
tity I. This means that the reduction of the bias is
attributed to the matrix IN in Eq. (59). This obser-
vation implies the possibility of further reducing the
bias by optimizing the matrix IN in the form

N
N}V;wavo[sawm, (62)

so that the bias is zero up to high order error terms.
Using the perturbation analysis in [19], Al-Sharadqah
and Chernov [1] actually did this for ellipse fitting,
and Kanatani et al. [20] extended it to general geo-
metric estimation. Their analysis goes as follows.
We write the observation x, as the sum x, = Z,+
Az, of the true value Z, and the noise term Ax,,.
Substituting this into &, = &(x,) and expand it in
the form
o t D18, +A0E, + -, (63)

where and hereafter the bar denotes the noiseless
value and A, denotes terms of O(c*). We similarly
expand M, 0, A\, and N and express Eq. (59) in the
form

(M +A M+ MM+ ) (04 210+ 220+ --+)
= A +A N+ + ) (N+AN+AN +---)
(0 + 210+ 250 +---).

Equating the terms of the same order in o, we obtain

AO=-M A M6, (64)
- (0,T0) - -
AL =M (,’fN -T
20 ((e,Ne) 6-T6).  (65)

where M~ is the pseudoinverse of M since M has
the eigenvector @ of eigenvalue 0, it has rank n —1 (n
is the dimension of ). The symbol Az @ denotes the
component of the second order noise term orthogonal
to 0; since 0 is a unit vector, it has no error in the
direction of itself, so we are interested in the error
orthogonal to it (Fig. 6). Note that the first order
error A0 in Eq. (64) is itself orthogonal to 6. In
Eq. (65), the matrix T is defined to be

T = AQM - AlMMiAlM. (66)
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From Eq. (64), we can show that the leading term
of the covariance matrix of € has the following form
[19].

V(0] = E[A10A,07] = %21\71*. (67)

From this we observe:

e The covariance matrix V[6] is O(o?).

e The right side of Eq. (19) agrees with the KCR
lower bound.

e Eq. (67) does not contain the matrix IN.

Thus, we cannot change the value of Eq. (67) by
adjusting the matrix IN. However, the root-mean-
square (RMS) error of 0 is the sum of the covariance
term and the bias term, and the bias term is also
O(c?) (the expectation of odd order noise terms is 0,
so the first order bias is E[A;0] = 0). Since the sec-
ond order bias term contains the matrix IN, we can
reduce it by adjusting N. From Eq. (65), the second
order bias has the following expression:

(6. E[TO))

E[AL6) = M‘( o) VO~ E[Té]). (68)

4.4 Hyper-renormalization

Equation (68) implies that if we can choose an N
such that

E[T0) =cN6 (69)
for some constant ¢, we will have
_ (0,cNB) .
piage) = v (LN Ng _end) 0. (70
426 ( (6,N6) cN?) (70)

In other words, the second order bias is completely
eliminated. In order to choose such an IN, we need
to evaluate the expectation E[T@)]. After a detailed
analysis (we omit the details), we can show that if we
define the matrix N by

N
N - }VX_:IW (Volea) + 25(€.es))

N
2 S W2 ((E ME V]
a=1

28Vl M E.E4]), (71)
then E[T@] = 02N holds, where e, is a vector that
depends on individual problems (the same vector as
that in Eq. (48)), and S[-] denotes symmetrization
(S[A] = (A+ A")/2). Since Eq. (71) contains the
true values, they are replaced by computed values.
This entails errors of O(o), but since the expecta-
tion of odd order noise terms is 0, Eq. (70) is O(c?).
Thus, we obtain the following procedure of hyper-
renormalization:
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1. Let Wy =1, =1, ..., N, and 8y = 0.
2. Compute the following matrices M and IN:

1 N
M= > Wabk, (72)
a=1
1 N
N = < > Wa(Volea] +25[, el

a=1

1 N
-~ S ((5a, M,_£,)Vol€,]
a=1

+2S[Vo €, M1 €,£0])- (73)
Here, M, _, is the pseudoinverse of M with
truncated rank n — 1 (cf. Eq. (48).

3. Solve the generalized eigenvalue problem

M6 = \NB, (74)
and compute the unit eigenvector 6 for the small-
est eigenvalue X in absolute value.

4. If 8 =~ O up to sign, return 6 and stop. Else, let

Wy — 6y — 06, (75)

1
(6,V5[£,10)°
and go back to Step 2.

It turns out that the initial solution with W, = 1 coin-
cides with what is called HyperLS [23, 24, 39], which
is derived to remove the bias up to second order er-
ror terms within the framework of algebraic methods
without iterations®. We omit the details, but all the
intermediate solutions € in the hyper-renormalization
iterations are shown to be free of second oder bias.
Thus, hyper-renormalization is an iterative improve-
ment of HyperLS. The above procedure is for the case
of single constraint in the form of Eq. (2) but can
be straightforwardly extended to the case of multiple
constraints (we omit the details).

4.5 Summary

We have seen that iterative reweight, renormaliza-
tion, and hyper-renormalization do not minimize any
cost function. In fact, irrespective of their original
motivations and derivations, these are the methods
for computing the “solution” 6 of

MO = \ANG. (76)
Iterating generalized eigenvalue computation is
merely a matter of convenience; any method that
solves Eq. (76) can do. In this sense, (76) corresponds
to the esimating equation for statistical estimation.

5The expression of Eq. (73) with W, = 1 lacks one term as
compared with the corresponding expression of HyperLS, but
the same solution is produced.
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Table 1: Summary of the non-minimization approach.

initial solution final solution
least squares — iterative reweight
Taubin — renormalization
HyperLS —  hyper-renormalization

The matrix M on the left side determines the co-
variance of the resulting solution ; if we choose the
M in Egs. (50), (58), and (72), the KCR lower bound
is achieved up to O(c#). The matrix N in Eq. (76)
controls the bias. For iterative reweight, renormaliza-
tion, and hyper-renormalization, it is chosen to be

I, iterative reweight
N
1
N c; WaVol€.], renormalization
1 N
N = — E T
Na_l W(x(%[ga] +2S[ e ])
— o
— T a 2 DY
N2 : : Wa < )

hyper-renormalization

(77)

We have shown that the last choice (Eq. (73)) elim-
inates the bias up to O(c*). If we iteratively solve
Eq. (76) for the N in Eq. (77), the initial solution
with W, = 1 corresponds to the least squares, the
Taubin method [43], and HyperLS [23, 24, 39], respec-
tively. In other words, Iterative reweight, renormal-
ization, and hyper-renormalization can be viewed as
iterative improvement of the solution of least squares,
the Taubin method, and HyperLS, respectively (Ta-
ble 1).

It can be shown that the matrix IN of renormal-
ization is positive semidefinite and has eigenvalue 0
while for hyper-renormalization IN is neither positive
nor negative (semi)definite: it has both positive and
negative eigenvalues. Standard linear algebra rou-
tines for solving the generalized eigenvalue problem
of Eq. (76) assume that N is positive definite, but
the matrix IV in Eq. (73) has both positive and neg-
ative eigenvalues. For renormalization, the matrix IN
is positive semidefinite, having eigenvalue 0. This,
however, causes no trouble, because the problem can
be rewritten as

1

NO=—-M©6.

3 (78)

The matrix M is positive definite for noisy data, so
we can use a standard routine to compute the eigen-
vector @ for the eigenvalue 1/\ with the largest abso-
lute value. If the matrix M happens to have eigen-
value 0, it indicates that the data are all exact, so
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the unit eigenvector for the eigenvalue 0 is the exact
solution.

The ML solution has bias of O(c?) (cf. Sec. 3.9),
while the bias of hyper-renormalization is O(c*). For
both, the covariance matrix of the solution agrees
with the KCR lower bound up to O(c*). In this sense,
hyper-renormalization is more accurate than ML. In
fact, according to experiments, the estimation error
has roughly the following order:

LS > iterative reweight > Taubin > renormalization

> ML > hyper-renormalization.

5. Examples

5.1 Evaluation of accuracy

Since the computed 8 and its true value 8 are both
unit vectors, we measure the discrepancy A@ between
them by the orthogonal component to 8 (Fig. 6),

Ao =P,0, Py=1-00", (79)
where Py is the projection matrix along 8. We gener-
ate M independent noise instances and evaluate the
bias B and the RMS (root-mean-square) error D de-
fined by

1M
D= .| — ALg(a)2
D= I

(80)
where 89 is the solution in the ath trial. From the
KCR lower bond in Eq. (19), the lower bound on the
RMS error D is evaluated by

PR SN
=5 X ate

D> tr(li buba )7 (81)
~ VN N = (0,%[¢,10)/ ~

where tr denotes the matrix trace.
5.2 Ellipse fitting

We define 30 equidistant points on the ellipse
shown in Fig. 7(a). The major and minor axis are
set to 100 and 50 pixels, respectively. We add in-
dependent Gaussian noise of mean 0 and standard
deviation o (pixels) to the z and y coordinates of
each point and fit an ellipse using: 1) LS, 2) iterative
reweight, 3) the Taubin method, 4) renormalization,
5) HyperLS, 6) hyper-renormalization, 7) ML, and
8) hyperaccurate correction of ML. Figures 7(b), (c)
show fitted ellipses for ¢ = 0.5 pixels; although the
noise magnitude is the same, the resulting ellipses
are different for different noise. The true shape is
indicated by dotted lines. Iterative reweight, renor-
malization, and hyper-renormalization all converged
after four iterations, while FNS for ML computation
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required nine iterations for Fig. 7(b) and eight iter-
ations for Fig. 7(c). We can see that LS and itera-
tive reweight have large bias, producing much smaller
ellipses than the true shape. The closest ellipse is
given by hyper-renormalization in Fig. 7(b) and by
hyperaccurate correction of ML in Fig. 7(c). Since
the solution is different for different noise, we need a
statistical test for a fair comparison.

Figures 8(a), (b) plot the bias B and the RMS error
D, respectively, defined in Eq. (80) over 10000 inde-
pendent trials for each o. The dotted line in Fig. 8(b)
is the KCR lower bound of Eq. (81). The interrupted
plots in Fig. 8 for iterative reweight, ML, and hyper-
accurate correction of ML indicate that the iterations
did not converge beyond that noise level. Our conver-
gence criterion is |[§—6g|| < 1076 for the current value
0 and the value 8y in the preceding iteration; their
signs are adjusted before subtraction. If this criterion
is not satisfied after 100 iterations, we stopped. For
each o, we regarded the iterations as not convergent if
any among the 10000 trials did not converge. Figure 9
enlarges Fig. 8 for the small o part. We can see from
Fig. 8(a) that LS and iterative reweight have very
large bias, in contrast to which the bias is very small
for the Taubin method and renormalization. The bias
of HyperLS and hyper-renormalization is still smaller
and even smaller than ML. Since the leading covari-
ance is common to iterative reweight, renormaliza-
tion, and hyper-renormalization, the RMS error di-
rectly reflects the influence of the bias as shown in
Fig. 8(b). Because hyper-renormalization does not
have bias up to high order error terms, it has nearly
the same accuracy as ML, or reprojection error min-
imization. A close examination of the small o part
(Fig. 9(b)) reveals that hyper-renormalization out-
performs ML. The highest accuracy is achieved, al-
though the difference is very small, by hyperaccurate
correction of ML. However, it first requires the ML
solution, and the FNS iterations for its computation
may not converge above a certain noise level, as shown
in Figs. 8. On the other hand, hyper-renormalization
is very robust to noise. This is because the initial so-
lution is HyperLsS, which is itself highly accurate as
seen from Figs. 8 and 9. For this reason, we conclude
that it is the best method for practical computations.

Figure 10(a) is an edge image of a scene with a
circular object. We fitted an ellipse to the 160 edge
points indicated in red, using various methods. Fig-
ure 10(b) shows the fitted ellipses superimposed on
the original image, where the occluded part is artifi-
cially composed for visual ease. In this case, iterative
reweight converged after four iterations, and renor-
malization and hyper-renormalization converged af-
ter three iterations, while FNS for ML computation
required six iterations. We can see that LS and itera-
tive reweight produce much smaller ellipses than the
true shape as in Fig. 7(b), (c). All other fits are very
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(a)

Figure 7: (a) Thirty points on an ellipse. (b), (c) Fitted ellipses (¢ = 0.5 pixels). 1) LS, 2) iterative reweight, 3) Taubin,
4) renormalization, 5) HyperLS, 6) hyper-renormalization, 7) ML, 8) hyperaccurate correction of ML. The dotted lines
indicate the true shape.

(b)
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Figure 8: The bias (a) and the RMS error (b) of the fitted ellipse for the standard deviation o (pixels) of the noise
added to the data in Fig. 7(a) over 10000 independent trials. 1) LS, 2) iterative reweight, 3) Taubin, 4) renormalization,
5) HyperLS, 6) hyper-renormalization, 7) ML, 8) hyperaccurate correction of ML. The dotted line in (b) indicates the

KCR lower bound.
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Figure 9: (a) Enlargement of Fig. 8(a). (b) Enlargement of Fig. 8(b).
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Figure 10: (a) An edge image of a scene with a circular object. An ellipse is fitted to the 160 edge points indicated
in red. (b) Fitted ellipses superimposed on the original image. The occluded part is artificially composed for
visual ease. 1) LS, 2) iterative reweight, 3) Taubin, 4) renormalization, 5) HyperLS, 6) hyper-renormalization,
7) ML, 8) hyperaccurate correction of ML.

close to the true ellipse, and ML gives the best fit in
this particular instance.

5.3 Fundamental matrix computation

Figure 11 shows simulated images of a curved grid
surface viewed from two directions. The image size
is 600 x 600 pixels, and the focal length is 600 pixels.
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Figure 11: Simulated images of a curved grid surface
viewed from two directions.

We add Gaussian noise of mean 0 and standard de-
viation o (pixels) to the & and y coordinates of each
grid point independently and compute the fundamen-
tal matrix F'. The fundamental matrix F' has rank 2,
s0 it is constrained to be det F' = 0 [12]. As described
in Sec. 3,this constraint can be imposed by the a pos-
teriori correction, internal access, or external access
approaches. Here, consider the a posteriori correc-
tion approach and compare the accuracy of various
methods without considering the rank constraint.

Figures 12(a), (b) plot the bias B and the RMS
error D, respectively, defined in Eq. (80) over 10000
independent trials for each o. The dotted line in
Fig. 12(b) is the KCR lower bound of Eq. (81).
As we can see from Fig. 12(a), LS and iterative
reweight have very large bias. As in the case of
ellipse fitting, the leading covariance is common
to iterative reweight, renormalization, and hyper-
renormalization, and hence the RMS error reflects
the influence of the bias as shown in Fig. 12(b).
As seen from Fig. 12(a), ML has considerable bias,
which is largely removed by the hyperaccurate cor-
rection, and hyper-renormalization directly computes
solutions with as small bias. However, all methods
except LS and iterative reweight nearly achieve the
KCR lower bound, as shown in Fig. 12(b). Hence, the
effect of bias reduction has little influence on the RMS
error. As in the case of ellipse fitting, the best per-
formance is obtained by hyper-renormalization and
hyperaccurate correction of ML, although the differ-
ence from other methods is very small.

6. Concluding Remarks

6.1 Geometric estimation

Geometric estimation is different from statistical
estimation. While statistical estimation is done by
repeated sampling from a parameterized probabil-
ity density (statistical noise), geometric estimation is
done by observing one set of data that should ideally
satisfy a parameterized implicit function (geometric
model). Geometric estimation critically relies on the
assumed statistical properties of noise and is classi-
fied into the minimization and non-minimization ap-
proaches. For whichever approach, there exists a the-
oretical accuracy limit called the KCR lower bound.
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6.2 Minimization approach

Typical methods of the minimization approach
are least squares (LS), maximum likelihood (ML),
of which reprojection error minimization is a special
case, and Sampson error minimization. The LS so-
lution is easily computed by solving an eigenvalue
problem but has large bias. The standard procedure
for ML computation is to introduce auxiliary vari-
ables and search the high-dimensional joint parameter
space, a typical application being bundle adjustment.
Sampson error minimization is an approximation to
ML, and the exact ML solution can be computed by
iterating Sampson error minimization. However, the
difference of ML from Sampson error minimization is
very small, and they are practically equivalent. The
accuracy of ML is further improved by hyperaccurate
correction: the bias of ML is theoretically evaluated
and is subtracted from the ML solution.

6.3 Non-minimization approach

Typical methods of the non-minimization ap-
proach are iterative reweight and renormalization.
For both, the weight is iteratively updated so that
the covariance matrix of solution achieves the KCR
lower bound. We can modify the renormalization
procedure so that the bias of the solution is elimi-
nated up to high-order noise terms and derive hyper-
renormalization. Iterative reweight, renormalization,
and hyper-renormalization can be regarded as iter-
ative improvement of LS, the Taubin method, and
HyperLS, respectively. Viewed differently, iterative
reweight, renormalization, and hyper-renormalization
solve the generalized eigenvalue problem M@ = AN 6,
which correspond to the estimating equations for sta-
tistical estimation. The matrix IN is not necessarily
positive definite, but we can use standard library tools
by solving N8 = (1/A)M 6. Because renormalization
and hyper-renormalization are respectively initialized
by the Taubin method and HyperLS, which them-
selves are of high accuracy, the convergence is very
fast; for many problems, the solution is obtained af-
ter three or four iterations.

6.4 Comparisons

According to numerical experiments, hyper-
renormalization has higher accuracy than ML, which
has been widely regarded as the most accurate
method. The highest accuracy is achieved by hy-
peraccurate correction of ML, but the iterations for
computing the ML solution may not converge in
the presence of large noise. In contrast, hyper-
renormalization is robust to noise. In this sense,
hyper-renormalization is the best method for prac-
tical applications.
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Figure 12: The bias (a) and the RMS error (b) of the computed fundamental matrix for the standard deviation o
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